Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Talanta ; 243: 123355, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1778463

ABSTRACT

Mass testing for the diagnosis of COVID-19 has been hampered in many countries owing to the high cost of genetic material detection. This study reports on a low-cost immunoassay for detecting SARS-CoV-2 within 30 min using dynamic light scattering (DLS). The immunosensor comprises 50-nm gold nanoparticles (AuNPs) functionalized with antibodies against SARS-CoV-2 spike glycoprotein, whose bioconjugation was confirmed using transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and surface-enhanced Raman scattering spectroscopy (SERS). The specific binding of the bioconjugates to the spike protein led to an increase in bioconjugate size, with a limit of detection (LOD) 5.29 × 103 TCID50/mL (Tissue Culture Infectious Dose). The immunosensor was also proven to be selective upon interaction with influenza viruses once no increase in size was observed after DLS measurement. The strategy proposed here aimed to use antibodies conjugated to AuNPs as a generic platform that can be extended to other detection principles, enabling technologies for low-cost mass testing for COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Biosensing Techniques/methods , COVID-19/diagnosis , COVID-19 Testing , Dynamic Light Scattering , Gold/chemistry , Humans , Immunoassay/methods , Metal Nanoparticles/chemistry , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Proteins
2.
Biomed Pharmacother ; 139: 111578, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1174104

ABSTRACT

The COVID-19 has become of striking interest since the number of deaths is constantly rising all over the globe, and the search for an efficient treatment is more urgent. In light of this worrisome scenario, this opinion review aimed to discuss the current knowledge about the potential role of curcumin and its nanostructured systems on the SARS-CoV-2 targets. From this perspective, this work demonstrated that curcumin urges as a potential antiviral key for the treatment of SARS-CoV-2 based on its relation to the infection pathways. Moreover, the use of curcumin-loaded nanocarriers for increasing its bioavailability and therapeutic efficiency was highlighted. Additionally, the potential of the nanostructured systems by themselves and their synergic action with curcumin on molecular targets for viral infections have been explored. Finally, a viewpoint of the studies that need to be carried out to implant curcumin as a treatment for COVID-19 was addressed.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Curcumin/therapeutic use , Drug Delivery Systems , Nanomedicine , Animals , Clinical Trials as Topic , Humans
SELECTION OF CITATIONS
SEARCH DETAIL